

	#	T	Ţ	Ŧ		$\Delta \Delta$		-	Ŧ
Lotus 2M	0035	2000mm	965mm	33,7 dm ²	HN1033 mod.	380g	6 ch.+	2x(HS-65HB)	300-750mAh
Timon 2M	0064	2000mm	950mm	33,7 dm ²	HN1033 mod.	370g	6 ch.+	3-4x(HS-65HB-HS-82)	750mAh

www.arthobby.pl, www.arthobby.eu

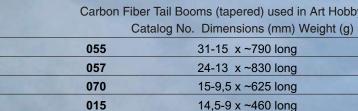
www.arthobby.com

Glider Kit - Components (Picture: Evolution 2.5M - example)

Art Hobby is a renowned producer of a wide range of radio controlled gliders and electro-gliders.

Reasons why you should choose ART HOBBY gliders/electro-gliders:

- Our models are widely recognized to be affordable and some of the best gliders on the market in their class.
- · Unique and modern constructions featuring low drag designs.
- Superb soaring performance, reliability and quality speaks for itself.
- · Innovative designs incorporated in our gliders make them lighter, stronger, and easy to assemble.
- Well engineered glider components are made with precision and fit together perfectly.
- Degree of finished pre-manufactured components reduces buildin time to a minimum.
- Allowing for custom finish and permits some alterations if desired by the modeler-builder.
- Modular designed wings, fuselages, and tail sections allow them to be exchanged among many of our gliders.
- All glider components are available upon request.
- · Online support and assistance courtesy to all of our clients-modelers.

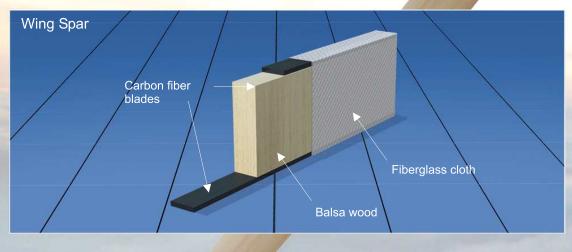

Construction

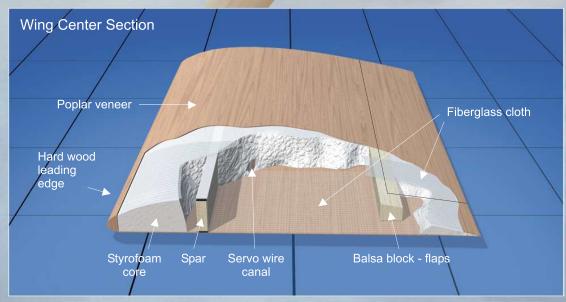
Wings - have cores precision cut from white special density polystyrene, all have thin black poplar veneer skins bonded to the core using aircraft industry grade epoxy. Bonding process is done in high pressure molds to achieve perfect airfoil fidelity and warp-free surfaces that fly straight and true with the highest aerodynamic efficiency. All have wing washouts built-in. Wing tips and leading edges are pre-installed and sanded to shape.

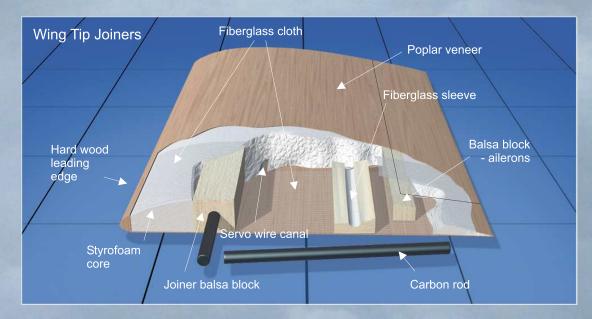
Fuselages - composite, made from pre-painted, multi layer molded epoxy-glass fibers reinforced with carbon fiber and glass roving where needed. Some fuselages have V-shape wing saddles with molded in wing nuts. Some models have carbon fiber composite tail booms. All fuselages feature either removable canopy or slip on nose cone.

Tail assembly - made of solid balsa or solid balsa laminated with light weight glass or foam cores pre-sheeted with ultra thin poplar veneer. All tails are finish sanded and have pre-hinged control surfaces. Some gliders feature removable tails.

Accessories - every glider kit includes a bag of needed accessories, pushrod(s), wing name sticker, detailed drawin, and building instructions.


Carbon Fiber Tail Booms (tapered) used in Art Hobby gliders


15 x ~790 long	~80	
13 x ~830 long	~40	
9,5 x ~625 long	~16	
5-9 x ~460 long	~13	11 Martin



Unique Art Hobby design, 3-segment wing joined with carbon fiber rods. (Picture: Serenity 2.5M - wing example)

Construction

Vertical Stabilizer construction: Glass composite reinforced with carbon fiber, painted in mold.

Rudder

construction: Veneer sheeted solid foam core with balsa LE and top and bottom edges.

(Picture: vertical stabilizer with rudder High Aspect)

V-tail

construction: Balsa stabilizers with prehinged elevators laminated with light fiberglass cloth. (Picture: V-tail Evolution 2.5M - tail example)

Ghost I.IM

Sturdy, light weight, hollow molded slope glider capable of high speed flying, aerobatic. It can be easily converted into an electro-glider.

Fuselage: #010P Wing: #011W Tail: **#011V**

Replacement Parts

Colibri-V I M

Colibri-S IM

Mosquito class glider, specially dedicated for small fields, slopes and light lift conditions. Suitable for sling shot launching method.

Replacement Parts Fuselage: #010P Wing: **#010W** Tail: **#010C**

COLIBIE

Replacement Parts Fuselage: #012P Wing: #011W Tail: **#012D**

Bobolinek-DL IM

Discus launch version of the Colibri glider. Equipped with a balsa glass reinforced removable horizontal stabilizer. Its wing could also be built as a polyhedral version.

Zuni-V I.2M

Zuni-S I.2M

Class glider specially dedicated for small fields, slopes and light lift conditions. Suitable for sling shot launching method.

Zuni-DL I.2M

Discus launch version of the Zuni glider. Equipped with a balsa glass reinforced horizontal stabilizer and elevator. Its wing could also be built as a polyhedral version.

	#	+	+	1		$\Delta^{L}\Delta$		*		ŧ
Colibri-S 1M	0010	1000 mm	750 mm	14,0 dm ²	HN1033 mod.	130 g	2 ch.+	300 mAh NiMh	2-6 ch.	2 x (micro) HS-45HB; HS-55
Colibri-V 1M	0011	1000 mm	750 mm	14,0 dm ²	HN1033 mod.	128 g	6 ch.+	300 mAh NiMh	5-6 ch.	3-4 x (micro) HS-45HB; HS-55
Bobolink-DL 1M	0012	1000 mm	780 mm	14,0 dm ²	HN1033 mod.	137 g	6 ch.+	300 mAh NiMh	5-6 ch.	2-4 x (micro) HS-45HB; HS-55
Ghost 1.1M	0095	1100 mm	560 mm	18,0 dm ²	EH1.0/9 mod.	320 g	6 ch.+	300-750 mAh NiMh	5-6 ch.	2 x (micro) HS-65HB; HS-65MG
Zuni-S 1.2M	0013	1200 mm	790 mm	15,9 dm ²	HN1033 mod.	156 g	2 ch.+	300 mAh NiMh	2-6 ch.	2 x (micro) HS-45HB; HS-55
Zuni-V 1.2M	0014	1200 mm	790 mm	15,9 dm ²	HN1033 mod.	154 g	6 ch.+	300 mAh NiMh	5-6 ch.	3-4 x (micro) HS-45HB; HS-55
Zuni-DL 1.2M	0019	1200 mm	800 mm	15,9 dm ²	HN1033 mod.	165 g	6 ch.+	300 mAh NiMh	5-6 ch.	2-4 x (micro) HS-45HB; HS-55

TOMULOGOS

Replacement Parts								
Canopy:	#095A							
Stabilizer:	#095S							

Replacement Parts Fuselage: #012P Wing: #014W Tail: **#014V**

Replaceme	nt Parts
Fuselage:	#012P
Wing:	#013W
Tail:	#014V

WE'I S-IUNZ

MI'I ISOUD

Replacement Parts									
Fuselage:	#012P								
Wing:	#014W								
Tail:	#014D								

Skua I.5M

Slope glider with a wide range of speed, good thermal abilities, aerobatic. Suitable for sling shot launching method. With the option of building its V-tail removable.

Hyper I.5M

Hyper

Slope and flat terrain glider with a wide range of speed, good thermal abilities, aerobatic. Suitable for sling shot launching method. With the option of building its V-tail removable.

Poly I.5M

Thermal glider for small fields, low stall speed, especially suitable for low lift conditions, good trainer.

Replacement Parts Fuselage: #015P Wing: #015W Tail: **#017D**

Hyper-DL 1.5M

Discus launch version of the Hyper glider, good trainer. Equipped with a balsa glass reinforced removable horizontal stabilizer. Its wing could also be built as a polyhedral version.

Replacement Parts Fuselage: #030F Wing: **#030W** Tail: **#030V**

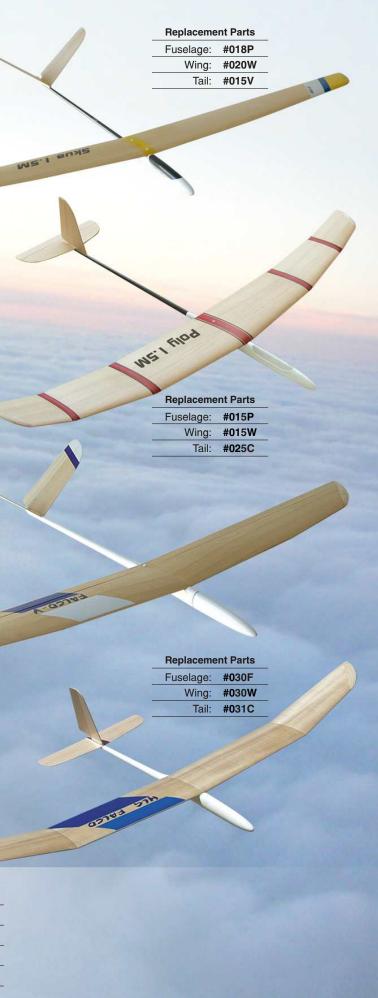
Replacement Parts Fuselage: #018P Wing: **#018W** Tail: **#018D**

Replacement Parts Fuselage: #015P Wing: #015W Tail: #015V

W51 70-130MH

Hybrid-DL 1.5M

Competition discus launched glider. Equipped with a balsa fully laminated vertical stabilizer, rudder, and removable glass reinforced horizontal stabilizer.


Falco I.5M

Falco-V I.5M

Slopes and flat terrains glider, a wide range of speed, aerobatic. Suitable for sling shot launching method. With removable tail that also could be attached permanently.

	#	+	+	_		$\Delta \Delta$		*	Ŀ	ţ
Hyper 1.5M	0015	1500 mm	935 mm	21,2 dm ²	HN1033 mod.	220 g	6 ch.+	300 mAh NiMh	5-6 ch.	3-4 x (micro) HS-45HB; HS-55
Hyper-DL 1.5M	0017	1500 mm	975 mm	21,2 dm ²	HN1033 mod.	230 g	6 ch.+	300 mAh NiMh	5-6 ch.	4 x (micro) HS-45HB; HS-55
Hybrid-DL 1.5M	0018	1500 mm	1033 mm	20,5 dm ²	JK7010 mod.	225 g	6 ch.+	300 mAh NiMh	5-6 ch.	4 x (micro) HS-45HB; HS-55
Skua 1.5M	0020	1500 mm	1020 mm	21,0 dm ²	MH-32/30 mod.	240 g	6 ch.+	300-750 mAh NiMh	5-6 ch.	2 x (micro) HS-45HB; HS-55
Poly 1.5M	0025	1500 mm	925 mm	21,2 dm ²	SD7080 mod.	225 g	2 ch.+	300 mAh NiMh	2-6 ch.	2 x (micro) HS-45HB; HS-55
Falco 1.5M	0031	1500 mm	920 mm	24,8 dm ²	HN1033 mod.	300 g	2 ch.+	300-750 mAh NiMh	2-6 ch.	2 x (micro) HS-45HB-HS-65HB
Falco-V 1.5M	0032	1500 mm	895 mm	24,8 dm ²	HN1033 mod.	290 g	6 ch.+	300-750 mAh NiMh	5-6 ch.	3-4 x (micro) HS-45HB-HS-65HB

Sky 2M & Sky-C 2M

Thermal glider for flat terrain, low stall speed, especially suitable for low lift conditions. Equipped with 3-segment wing for easy storage and transportation. It has balsa fully laminated tail with removable horizontal stabilizer.

Sky 1.7M & Sky-C 1.7M

WL'I FINS

Thermal glider for flat terrain with low stall speed, especially suitable for low lift conditions, good trainer. Equipped with 3-segment wing for easy storage and transportation. It has balsa fully laminated tail with removable horizontal stabilizer.

Replacement Parts Fuselage: #018P Wing: **#047W** Tail: **#047C**

Replacement Parts

Fuselage: #018P

Wing: #047W

Tail: **#047C**

Sky-V 2M

Thermal glider for flat terrain, low stall speed, especially suitable for low lift conditions on the slope. Equipped with 3-segment wing for easy storage and transportation. Its has a V-tail with option of making it removable.

1 500

N2 3-

Sky-V I.7M

WEI J-FORS

WL'I AFOIS

Thermal glider for flat terrain with low stall speed, especially suitable for low lift conditions, good trainer. Equipped with 3-segment wing for easy storage and transportation. Its has a V-tail with option of making it removable.

Replacement Parts Fuselage: #018P Wing: **#047W** Tail: **#015V**

	#	+	+	1		$\Delta \Delta$		+		Ť
Sky 1.7M	0034	1700 mm	1080 mm	23,8 dm ²	SD7080 mod.	320 g	2 ch.+	300-750 mAh NiMh	4-6 ch.	2 x (mini) HS-45HB-HS-65HB
Sky-C 1.7M	0033	1700 mm	1080 mm	23,8 dm ²	SD7080 mod.	325 g	6 ch.+	750 mAh NiMh	5-6 ch.	4 x (mini) HS-45HB-HS-65HB
Sky-V 1.7M	0032	1700 mm	1040 mm	23,8 dm ²	SD7080 mod.	310 g	6 ch.+	750 mAh NiMh	5-6 ch.	3-4 x (mini) HS-45HB-HS-65HB
Sky 2M	0062	2000 mm	1110 mm	31,2 dm ²	SD7080 mod.	355 g	2 ch.+	750 mAh NiMh	4-6 ch.	2 x (mini) HS-45HB-HS-65HB
Sky-C 2M	0061	2000 mm	1110 mm	31,2 dm ²	SD7080 mod.	360 g	6 ch.+	750 mAh NiMh	6 ch.	4 x (mini) HS-65HB-HS-82
Sky-V 2M	0060	2000 mm	1070 mm	31,2 dm ²	SD7080 mod.	345 g	6 ch.+	750 mAh NiMh	6 ch.	3-4 x (mini) HS-65HB-HS-82

Replacement Parts Fuselage: #060P Wing: #060W Tail: **#072C**

Replaceme	ent Parts		
Fuselage:	#060P		
Wing:			
	#072C		
The second second			/
		1	
•	-		
States and States			

	Replaceme			
	Fuselage:	#060P		
	Wing:	#060W		
	Tail:	#070V		- Aller
-				
			/	
-				

Replacement Parts Fuselage: #070P Wing: #066W Tail: **#070V**

Boar 2M

A versatile glider for slope and flat terrain with a wide range of speed, good for low lift conditions. Equipped with 3-segment wing for easy storage and transportation. Its has a V-tail with option of making it removable. Recommended for high start launching.

BOBISW

Replacement Parts

Fuselage: #070P Wing: #066W Tail: **#067C**

Boar-RES 2M

Boar-C 2M

A versatile glider for flat terrains with a wide range of speed, good for low lift conditions. Equipped with 3-segment wing for easy transportation and storage. Recommended for high start launching.

we mean

	#	†	+	1				2		t
Boar 2M	0066	2000 mm	1110 mm	33,7 dm ²	HN1033 mod.	360 g	6 ch.+	750 mAh NiMh	5-6 ch.	3-4 x (micro/mini) HS-65HB-HS-82
Boar-C 2M	0067	2000 mm	1100 mm	33,7 dm ²	HN1033 mod.	360 g	6 ch.+	750 mAh NiMh	5-6 ch.	4 x (micro/mini) HS-65HB-HS-82
Boar-RES 2M	0068	2000 mm	1100 mm	33,7 dm ²	HN1033 mod.	360 g	4 ch.+	750 mAh NiMh	4-6 ch.	2-4 x (micro/mini) HS-65HB-HS-82

Replaceme	ent Parts
Fuselage:	#070P
Wing:	#066W
Tail:	#067C

Light weight thermal glider with a wide range of speed. Equipped with 3-segment wing for easy storage and transportation. Recommended for high start launching.

Replacement PartsFuselage:#050FWing:#050WTail:#051C

Velvia 2M & Velvia-C 2M

Sturdily built, 2-meter Class glider with good thermal abilities in different weather conditions, good trainer. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons only with ailerons and flaps or as a polyhedral. With removable tail that also could be attached permanently.

WE J-EINIAN

WE EIVISY

Velvia-V 2M

Sturdily built, 2-meter Class glider with good thermal abilities in different weather conditions, good trainer. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. With removable balsa V-tail that also could be attached permanently.

Evolution 2.5M

Specially designed very efficient glider for slope and flat terrain. Due to its strong airframe and wing modified airfoil it's capable of high speed flying, and is fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has a removable balsa-lamianated V-tail that also could be attached permanently. Recommended to be launched with high start system or moderate power winch.

Replacement Parts

Fuselage: #073P

Wing: **#073W**

Tail: **#073V**

4 S RA

Replacement PartsFuselage:#050FWing:#050WTail:#051C

	#	+	+			5		*		ŧ
Velvia 2M	0052	2000 mm	1120 mm	37,5 dm ²	SD7037 mod.	555 g	2 ch.+	750-1000 mAh NiMh	4-6 ch.	4-6 x (mini) HS-65HB-HS-81
Velvia-C 2M	0051	2000 mm	1120 mm	37,5 dm ²	SD7037 mod.	555 g	6 ch.+	750-1000 mAh NiMh	6 ch.	4-6 x (mini) HS-65HB-HS-85MG
Velvia-V 2M	0050	2000 mm	1120 mm	37,5 dm ²	SD7037 mod.	550 g	6 ch.+	750-1000 mAh NiMh	6 ch.	4-6 x (mini) HS-65HB-HS-85MG
Evolution 2.5M	0073	2500 mm	1290 mm	42,9 dm2	MH32/30 mod.	520 g	6 ch.+	750-1100 mAh NiMh	6-7 ch.	4-6 x (mini) HS-65HB/MG-HS-82MG

Replacement PartsFuselage:#050FWing:#050WTail:#050V

Replacement Parts Fuselage: #070P Wing: **#070W** Tail: **#070V**

JK. Thermic 2.5M

A versatile light weight thermal glider for flat terrains and slopes with a wide range of speed, especially suitable for low lift conditions. Recommended for high start launching. Equipped with aileron wing 3-segment design for easy storage and transportation. Its has a V-tail with option of making it removable.

Thermic-RES 2.5M

C.IHERMEC" ?.519

Very efficient light weight competition thermal glider with a wide range of speed. Recommended for high start launching. Equipped with 3-segment wing for easy storage and transportation. It has balsa fully laminated tail with removable horizontal stabilizer.

Sierra-S 2.5M

A versatile slope glider with a wide range of speed, good thermal abilities in different weather conditions and fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has removable veneer sheeted solid foam core V-tail that also could be attached permanently.

Replacement Parts									
Fuselage:	#070P								
Wing:	#070W								
Tail:	#072C								

	#	+	+	1		55		0 +		Ť
JK.Thermic 2.5M	0070	2500 mm	1160 mm	40,2 dm ²	HN1033 mod.	476 g	6 ch.+	750 mAh NiMh	6 ch.	3-4 x (micro/mini) HS-65HB/MG-HS-82MG-HS-1
Thermic-RES 2.5M	0072	2500 mm	1160 mm	40,2 dm ²	HN1033 mod.	476 g	4 ch.+	750 mAh NiMh	6 ch.	2-4 x (micro/mini) HS-56HB-HS-65HB
Sierra-S 2.5M	0054	2500 mm	1230 mm	47,0 dm ²	RG15 mod.	795 g	6 ch.+	1100-1600 mAh NiMh	6 ch.	4-6 x (mini) HS-65HB/MG-HS-85MG

Replaceme	nt Parts
Fuselage:	#054F
Wing:	#054W
Tail:	#055V

WS 2 S VERSS

Serenity 2.5M

Competition F3F Class slope glider, sturdily built with a wide range of speed, fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has removable veneer sheeted solid foam core V-tail that also could be attached permanently.

High Aspect 3.1M

Very efficient and accomplished thermal glider with a wide range of speed. Highly recommended for F3J competition when flying in low lift conditions. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has veneer sheeted solid foam core rudder and removable horizontal stabilizer. Recommended to be launched with high start system or moderate power winch.

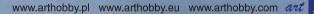
WIE padsy upit

Replacement Parts Fuselage: #055P Wing: #056W Vertical stabilizer: #056S Horizontal stabilizer: #056H Rudder: #056R

Ibis 3M

A versatile very stable glider with great thermal abilities and a wide speed range, fully aerobatic. Recommended to be launched with high start system or moderate power winch. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has a removable veneer sheeted solid foam core, horizontal stabilizer and rudder. Removable rudder provides easy access to the elevator servo mounted inside of the vertical stabilizer.

Replacement Parts


Fuselage:	#057P
Wing:	#058W
Vertical stabilizer:	#057S
Horizontal stabilizer:	#057H
Rudder:	#057R

High Aspect-RES 3.1M

Very efficient thermal glider with a wide range of speed. Popularly used in RES class. Highly recommended for low lift conditions. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has veneer sheeted solid foam core rudder and removable horizontal stabilizer. Recommended to be launched with high start system or moderate power winch.

	#	+	+	1		\mathbf{A}^{L}		0 +		Ť
Serenity 2.5M	0055	2500 mm	1350 mm	48,6 dm ²	MS1.8/9 mod.	800 g	6 ch.+	1100-1600 mAh NiMh	6-8 ch.	4-6 x (micro/mini) HS-65HB-HS-85MG
Ibis 3M	0056	3000 mm	1400 mm	52,0 dm2	SD7080 mod.	930 g	6 ch.+	1100-1600 mAh NiMh	6-7 ch.	4-6 x (mini) HS-65HB-HS-85MG
High Aspect 3.1M	0057	3100 mm	1630 mm	53,6 dm ²	SD7080 mod.	860 g	6 ch.+	1100-1600 mAh NiMh	6-7 ch.	4-6 x (mini) HS-65HB-HS-85MG
High Aspect-RES 3.1M	0058	3100 mm	1630 mm	53,6 dm ²	SD7080 mod.	850 g	4 ch.+	750-1100 mAh NiMh	4-6 ch.	2-4 x (mini) HS-65HB/MG-HS-82MG

Replacement Parts								
#057P								
#057W								
#057S								
#057H								
#057R								

Alpha-E I M

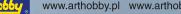
Very light weight electro-glider with a wide range of speed, aerobatic, good thermal abilities, especially suitable for low lift conditions. Recommended to be powered with light weight outrunner motor 250 - 500 g of thrust.

Hybrid-E 1.5M

Very light weight electro-glider with a wide range of speed, aerobatic, especially suitable for low lift conditions. Recommended to be powered with light weight outrunner motor 350 - 500 g of thrust.

Replacement Parts							
Fuselage:	#041F						
Wing:	#041W						
Tail:	#041T						

Replacement Parts Canopy: #095A Stabilizer: #095S


Ghost-E I.IM

Sturdy, light weight, hollow molded electro-glider capable of high speed flying, fully aerobatic. Recommended to be powered with outrunner motor 700 - 900 g of thrust.

Agena-E I.5M & Agena-ES I.5M

Light weight electro-glider, sport flyer with a wide range of speed, good thermal abilities, aerobatic. Recommended to be powered with outrunner motor 350 - 900 g of thrust.

	#	+	+	1		5	<u>e</u>		A	0 +
Alpha-E 1M	0041	1000 mm	645 mm	14,1 dm ²	HN1033 mod.	135 g	4 ch.+	7x4-8x4,5-9x5	BLX-22/13-BLX-22/18	900-950 mAh,
Ghost-E 1.1M	0096	1100 mm	560 mm	18,0 dm ²	EH1.09 mod.	315 g	4 ch.+	5x5,5-6x5,5	PJS-400	2100-2500 mAh
Hybrid-E 1.5M	0040	15 <mark>00</mark> mm	1005 mm	20,5 dm ²	JK1070 mod.	215 g	6 ch.+	8x4,5-9x5	BLX-22/13	700-910 mAh,
Agena-EV 1.5M	0081	1500 mm	1020 mm	21,0 dm ²	MH32/30 mod.	245 g	6 ch.+	8x4,5-11,5x6	PJS-700-900ART	700-1100 mAh,
Agena-ES 1.5M	0082	1500 mm	1020 mm	21,2 dm ²	HN1033 mod.	245 g	6 ch.+	8x4,5-11,5x6	PJS-700-900ART	700-1100 mAh,

	Replaceme	nt Parte		
	Fuselage:	#040P	-	
	Wing:	#018W		
////	Tail:	#015V	-	
		/		
		-	/ .	
W5.1 3-61	рапн			
WS'I -	and the second s			
			/	
	Replaceme		- State State	
-	Fuselage: Wing:	#081F #015W	_	
	Tail:	#015W		2
	And and a state of the state of	-		/
			1	/
		-		
		. /	,	
-64				
51 3-24364				
512			1	
		/		
	Re	placeme	nt Parts	
	_Fu	selage:	#081F	
	11	Wing:	#026W	
		Tail:	#015V	
				/
	-264	1		
WS-1 53-6	00		/	
WS			Y	
			/	
		/		
Ab Q call D	0.1			
Ah, 3 cel LiPo			HS-45HB	
nAh, 3 cel LiPo			i) HS-65HB	P
Ah, 3 cel LiPo			HS-45-HS65H	the second se
Ah, 3 cel LiPo			HS-45-HS65H	
Ah, 3 cel LiPo	3-4X(mic	(mini)	HS-45-HS65H	D

Sky-EV I.7M

Light weight thermal electro-glider for flat terrain. Low stall speed, especially suitable for low lift conditions. Equipped with 3-segment wing for easy storage and transportation. Its has a V-tail with option of making it removable. Recommended to be powered with outrunner motor 700 - 900 g of thrust.

Replacement Parts Fuselage: #047P Wing: **#047W** Tail: **#015V**

WEI NE-FNS

WE' Janus

Sky-E 2M & Sky-EC 2M

removable horizontal stabilizer. Recommended to be powered with outrunner motor 700 -1200 g of thrust.

Replacement Parts Fuselage: #047P Wing: **#047W** Tail: **#047C**

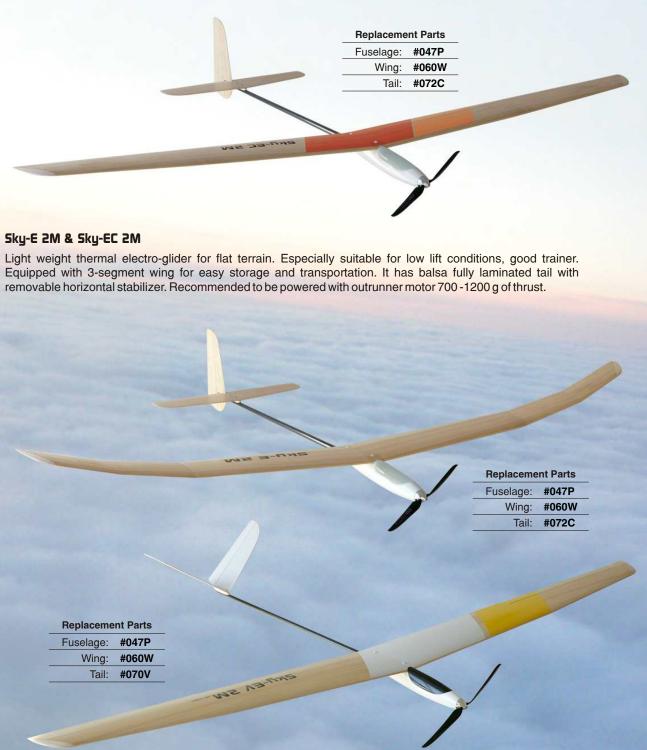
Sky-E I.7M & Sky-EC I.7M

Light weight thermal electro-glider for flat terrain. Low stall speed, especially suitable for low lift conditions, good trainer. Equipped with 3-segment wing for easy storage and transportation. It has balsa fully laminated tail with removable horizontal stabilizer. Recommended to be

powered with outrunner motor 700 - 900 g of thrust.

> **Replacement Parts** Fuselage: #047P Wing: **#047W** Tail: **#047C**

Replacement Parts #047P Fuselage: Wing: #060W Tail: **#070V**


Sky-EV 2M

Light weight thermal electro-glider for flat terrain. Sport flyer, especially suitable for low lift conditions. Equipped with 3-segment wing for easy storage and transportation. Its has a V-tail with option of making it removable. Recommended to be powered with outrunner motor 900 - 1200 g of thrust.

SCA

	#	+	+			۲ ۵				€ 1 ≠	t
Sky-E 1.7M	0049	1700 mm	1080 mm	23,8 dm ²	SD7080 mod.	320 g	4 ch.+	12x6-12,5x6	PJS-700ART	700-950 mAh, 3 cel LiPo	2x(mic./mini) HS-45-HS65HB
Sky-EV 1.7M	0047	1700 mm	1060 mm	23,8 dm ²	SD7080 mod.	310 g	6 ch.+	11,5x6-12,5x6	PJS-700-900ART	950-1100 mAh, 3 cel LiPo	3-4x(mic./mini) HS-45-HS65HB
Sky-EC 1.7M	0048	1700 mm	1080 mm	23,8 dm ²	SD7080 mod.	325 g	6 ch.+	11,5x6-12,5x6	PJS-700-900ART	950-1100 mAh, 3 cel LiPo	3-4x(mic./mini) HS-45-HS65HB
Sky-E 2M	0080	2000 mm	1110 mm	31,2 dm ²	SD7080 mod.	355 g	4 ch.+	11,5x6-12,5x6	PSJ-900-1200ART	950-1600 mAh, 3 cel LiPo	2x(mic./mini) HS-45HB-HS-65HB
Sky-EV 2M	0084	2000 mm	1070 mm	31,2 dm ²	SD7080 mod.	345 g	6 ch.+	12x6-12,5x6	PSJ-1200ART	950-1600 mAh, 3 cel LiPo	3-4x(mic./mini) HS-45HB-HS-82
Sky-EC 2M	0085	2000 mm	1110 mm	31,2 dm ²	SD7080 mod.	360 g	6 ch.+	12x6-12,5x6	PSJ-1200ART	950-1600 mAh, 3 cel LiPo	3-4x(mic./mini) HS-45HB-HS-82

art

Castor-EV 2.5M

A versatile light weight, thermal electro-glider with a wide range of speed. Especially suitable for low lift conditions. Equipped with aileron wing 3-segment design for easy storage and transportation. Its has a V-tail with option of making it removable. Its wing could also be built as a polyhedral version and V-tail replaced with classic tail. Recommended to be powered with outrunner motor 1200 - 1400 g of thrust.

Serenity-EV 2.5M

Ibis-ET 3M

1900 - 2500 g of thrust.

Sturdily built electro-glider with a wide range of speed, capable of high speed flying, fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has removable veneer sheeted solid foam core V-tail that also could be attached permanently. Recommended to be powered with drive system 1400 - 2500 g of thrust.

Evolution-EV 2.5M

Specially designed very efficient electro-glider. Due to its strong airframe and wing modified airfoil it's capable of high speed flying, fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has a removable balsa-lamianated V-tail that also could be attached permanently. Recommended to be powered with outrunner motor 1200 - 1400 g of thrust.

52 Ŧ - Aliana Alian Alian Aliana Aliana Aliana Aliana Aliana Aliana Aliana Aliana Al # 2 Castor-EV 2.5M 0086 2500 mm 1235 mm 40,2 dm² HN1033 mod. 520 g 6 ch.+ 12x6-12,5x6 PSJ-1400ART 1600-25 Evolution-EV 2.5M 12x6-12,5x6 PSJ-1400ART 1600-25 0045 2500 mm 1290 mm 42,9 dm² MH32/30 mod. 575 g 6 ch.+ Serenity-EV 2.5M 0087 2500 mm 1340 mm 48,6 dm² MS1.8/8.7 mod. 775 g 6 ch.+ 13x7-15x10 PSJ-2500ART/KIRA 480-31/5.2:1 2500-4 13x7-16x8 PSJ-2500ART/KIRA 480-31/5.2:1 3200-4 Ibis-ET 3M 0089 3000 mm 1390 mm 52,0 dm² SD7080 mod. 925 g 6 ch.+

Replacement Parts Fuselage: #087P Wing: #055W Tail: #055V

A versatile electro-glider very stable with great thermal abilities and a wide speed range, fully aerobatic. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps or with ailerons only. It has a removable veneer sheeted solid foam core, horizontal stabilizer and rudder. Removable rudder provides easy access to the elevator servo mounted inside of the vertical stabilizer. Recommended to be powered with drive system

° ↓	
500 mAh, 3 cel LiPo	3-4x(mic./mini) HS-65HB-HS-82
500 mAh, 3 c. LiPo	4-6x(mini) HS-65HB-HS-125MG
000 mAh, 3 c. LiPo	4-6x(mini) HS-65HB-HS-85MG
000 mAh, 3 c. LiPo	4-6x(mini) HS-65HB-HS-85MG

Finishing Wood Surfaces

To prevent the wood from pre-mature aging, stains and moisture damage, we recommend sealing the wing wood veneer and tail surfaces using lacquer.

Lacquer is the finish of our choice, because is the lightest type of finish, easy to apply, fast to work with, and brings out the natural beauty of the finished wood. In our opinion the "Satin" or "Semi gloss" type of lacquer will provide the best finish.

During the manufacturing process the black poplar veneer wing skins (~0.4 mm thick) first have sealed undersurface then are laminated with epoxy to the wing foam cores. This process is providing a barrier preventing harsh lacquer thinner from penetrating inside.

(Prior to using lacquer, any exposed white foam surface should be glassed over with light weight fiberglass cloth as described in glider manuals, also all small surfaces like both sides of the ailerons/flaps ends have to be sealed by applying a film like thin coat of epoxy).

To achieve best finish we recommend to apply first lacquer primer by brushing on one or two light cots. This way lacquer thinner evaporates very fast and does not have time to cause any harm to the wing foam cores also the lacquer primer has more body in it so it will fill tiny crevices up faster and any natural imperfections in the wood surface.

After applying the first and second light coats, sand the surface using 400 grid sand paper, then spray on a light 3-rd, 4-th coats, or more if desired. Use as little as possible to keep the weight down.

Color Option:

After wing is completely finished with lacquer then it can be masked, and color stripes or any other custom patterns could be sprayed on. Wide color contrasting stripes on the bottom side of the wing will give the glider some accent and especially provide modeler/pilot with better visual contact during flight.

Ruselage:#088PWing:#057WVertical stabilize:#057EHorizontal stabilize:#057ERudder:#057E

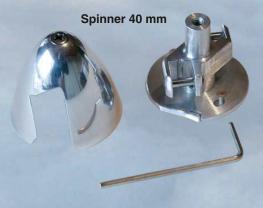
High Aspect-ES 3.1M

Very efficient thermal electro-glider with a wide range of speed, suitable for low lift conditions. Equipped with 3-segment wing for easy storage and transportation that could be built with ailerons and flaps, with ailerons only or build as a polyhedral wing. It has veneer sheeted solid foam core rudder a removable horizontal stabilizer. Recommended to be powered with drive system 1900 - 2500 g of thrust.

labbu www.arthobby.pl www.arthobby.eu www.arthobby.com

art /

	A0029	Adjustable pushrod mount for servo arm
s)	A0030	Air vent-fearing (set of 2) glass composite,
		ultra light weight (fits all 2M - 3.1M electro-gliders)
	A0031	Universal wing servo cover
		(set of 2) glass comp., ultra light weight
ers)	A0032	M2 - steel bolt w/nut (pack of 2)
ders)	A0033	M3 - nylon bolt (pack of 2)
of 2)	A0034	M3 - steel bolt w/nut (pack of 2)
012)	A0035	M4 - nylon wing bolt (pack of 2)
	A0036	M4 - nylon nut w/metal insert (pack of 2)
	A0037	M4 - stainless steel wing bolt (pack of 2)
	A0038	Nylon retainer for 4mm wing bolt (pack of 2)
	A0039	M5 - nylon wing bolt (pack of 2) (Velvia, Sierra)
LG)	A0040	Nylon retainer for 5 mm wing bolt (pack of 2)
LG (set of 2)	A0044	Wing Tip Joiner carbon rod set (4 x 4 mm rods)
of 2)	A0046	Wing Tip Joiner carbon rod set
tail (set of 2)		(2 x 4 mm + 2 x 5 mm rods)
	A0047	Wing Tip Joiner carbon rod set (4 x 6 mm rods)
iders)	A0050	Tow Hook machined w/M4 nut - set
long	A0060	Hinge tape: 25,4 mm - 1" (5 -meter roll)


Folding Propeller Blades

	Graupner					Aeronaut				Art Hobby	
	CAM	CAM	CAM	CAM	CAM	CAM	CAM	CAM		CAM carbon	CAM carbon
	8x4,5	9x5	11x8	12x6	13X7	14x8	15x8	16x8		11,5x6	12,5x6
No.	A00845	A00950	A01180	A01260	A01370	A01480	A01580	A01680		A01156	A01256

Spinners:	31 mm LowDrag	31 mm LowDrag	31 mm LowDrag	40 mm LowDrag	40 mm LowDrag
No. Spinner diameter (mm):	A032S31 Ø31	A031S3 Ø31	A031S4 Ø31	A041S4 Ø40	A041S5 Ø40
Spinner length (mm):	25	25	25	39	39
Spinner weight (g):	11,5	11,5	11,5	26	26
Motor shaft diam. (mm):	Ø3	Ø3,17	Ø4	Ø4	Ø5
Blade mount width (mm):	6	6	6	8	8
Blade pin diameter (mm):	Ø2	Ø2	Ø2	Ø3	Ø3

Brushless Motor Controller:	BL-17 MultiCont	BL-37 MultiCont Multiplex	BL-55 MultiCont	18A Thunderbird	36A Thunderbird Castle (60A Phoenix Creation	10 A CC BEC
No.	M72274	M72276	M997255	M00180	M00360	M00600	M99920
Continuous Current:	17 A	37A	55 A	18 A	36 A	60 A	5-10 A
Weight approx .:	9 g	30 g	34 g	17 g	20 g	58 g	11 g
BEC:	1,5 A	1,5 A	3 A	3 A	3 A	3 A	-

Motor

Permax BL-X 22/13

PJS-900ART Ø4,0 Ø32 / 40 65

PJS-1200ART Ø4,0 Ø32/48 82

PJS-1400ART Ø4,0 Ø32/52 110

PJS-2500ART Ø5,0 Ø40 / 52 162

Ø5,0 Ø28/79 196

Brushless Outrunner Motors Specially Designed for Art-Hobby Electro-Gliders

Shaft Diameter (mm)	Diameter /Length (mm)	Weight (g)	Battery	Current Draw (A)	Power (W)	Propeller Size	Spinner (mm)	Applications/ ESC & Batteries
Ø3,2	Ø22 / 27	31	LiPo 3-c. (11,1V)	8,6 10,8	99 120	8x4,5 CAM 9x5 CAM	Ø31	Zuni-E 1.2M Hybrid-E 1.5M Hush-E 1.5M Controller: 17-18 A Batteries: 700-910 mAh (max. ~70 g)
Ø4,0	Ø32 / 40	65	LiPo 3-c. (11,1V)	8,3 12,2	99 146	11,5x6 Carbon 12,5x6 Carbon	10.01	Sky-E 1.7M Agena-E 1.5M Universal 1.5M Controller: 17 - 18 A Batteries: 700-1100 mAh (max. ~90 g)
Ø4,0	Ø32 / 40	65	LiPo 3-c. (11,1V)	17,2	206	11,5x6 Carbon	Ø31	Agena-E 1.2M Universal 1.5M Sky-E 1.7M Controller: 18 - 37A Batteries: 950-1100 mAh (max. ~100 g)
Ø4,0	Ø32 / 48	82	LiPo 3-c. (11,1V)	23,2	278	12,5x6 Carbon	Ø31	Sky-E 2M Andromeda-E 2M Castor 2.5M Controller: 36 - 37 A Batteries: 950-1600 mAh (max. ~130 g)
Ø4,0	Ø32 / 52	110	LiPo 3-c. (11,1V)	29,5	354	12,5x6 Carbon	Ø31	Evolution-E 2.5M Castor-E 2.5M Andromeda 2M Controller: 36 - 55 A Batteries: 1600-2500 mAh (max. ~200 g)
Ø5,0	Ø40 / 52	162	LiPo 3-c. (11,1V)	27,4 30 36	328 360 432	13x7 CAM 13x8 CAM 14,5x7 Carbon	Ø40	High Aspect-ES 3.1M Ibis-E 3M Serenity-E 2.5M Controller: 36 - 60 A Batteries: 2500-4000 mAh (max. ~350 g)
Ø5,0	Ø28 / 79	196	LiPo 3-c. (11,1V)	35,5 42,3 38,2 43	426 507 458 516	14x8 CAM 14x10 CAM 15x8 CAM 16x8 CAM	Ø40	High Aspect-ES 3.1M Ibis-E 3M Serenity-E 2.5M Controller: 36 - 60 A Batteries: 2500-4000 mAh (max. ~350 g)

www.arthobby.pl www.arthobby.eu www.arthobby.com ant

